[1] |
公晗, 颜天, 周名江, 2014. 褐潮藻Aureococcus anophagefferens的危害研究进展[J]. 海洋科学, 38(6): 78-84.
|
|
GONG HAN, YAN TIAN, ZHOU MINGJIANG, 2014. Advance in study of the impacts of Aureococcus anophagefferens[J]. Marine Sciences, 38(6): 78-84 (in Chinese with English abstract).
|
[2] |
雷蕾, 姚鹏, 2016. 抑食金球藻褐潮环境影响因素研究进展[J]. 海洋环境科学, 35(4): 635-640.
|
|
LEI LEI, YAO PENG, 2016. Advances in the environmental factors of brown tide of Aureococcus anophagefferens[J]. Marine Environmental Science, 35(4): 635-640 (in Chinese with English abstract).
|
[3] |
乔玲, 甄毓, 米铁柱, 2016. 抑食金球藻(Aureococcus anophagefferens)褐潮研究概述[J]. 海洋环境科学, 35(3): 473-480.
|
|
QIAO LING, ZHEN YU, MI TIEZHU, 2016. Review of the brown tides caused by Aureococcus anophagefferens[J]. Marine Environmental Science, 35(3): 472-480 (in Chinese with English abstract).
|
[4] |
宋广军, 宋轮, 王年斌, 等, 2014. 褐潮研究现状[J]. 河北渔业, (9): 61-64.
|
|
SONG GUANGJUN, SONG LUN, WANG NIANBIN, et al, 2014. The present research status of brown tide[J]. Hebei Fisheries, (9): 61-64 (in Chinese with English abstract).
|
[5] |
宋伦, 吴景, 宋永刚, 等, 2017. 褐潮致灾种抑食金球藻在辽东湾的分布[J]. 环境科学研究, 30(4): 537-544.
|
|
SONG LUN, WU JING, SONG YONGGANG, et al, 2017. Distribution of brown tide species Aureococcus anophagefferens in Liaodong Bay[J]. Research of Environmental Sciences, 30(4): 537-544 (in Chinese with English abstract).
|
[6] |
BERNARD C, RASSOULZADEGAN F, 1990. Bacteria or microflagellates as a major food source for marine ciliates: possible implications for the microzooplankton[J]. Marine Ecology Progress Series, 64: 147-155.
|
[7] |
BRECKELS M N, ROBERTS E C, ARCHER S D, et al, 2011. The role of dissolved infochemicals in mediating predator-prey interactions in the heterotrophic dinoflagellate Oxyrrhis marina[J]. Journal of Plankton Research, 33(4): 629-639.
|
[8] |
BRICELJ V M, FISHER N S, GUCKERT J B, et al, 1989. Lipid composition and nutritional value of the brown tide alga Aureococcus anophagefferens[M]//COSPER E M, BRICELJ V M, CARPENTER E J. Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Berlin, Heidelberg: Springer: 85-100.
|
[9] |
BRICELJ V M, LONSDALE D J, 1997. Aureococcus anophagefferens: causes and ecological consequences of brown tides in U.S. mid-Atlantic coastal waters[J]. Limnology and Oceanography, 42(5 Part2): 1023-1038.
|
[10] |
BRUSSAARD C P D, MARIE D, THYRHAUG R, et al, 2001. Flow cytometric analysis of phytoplankton viability following viral infection[J]. Aquatic Microbial Ecology, 26(2): 157-166.
|
[11] |
BUSKEY E J, HYATT C J, 1995. Effects of the Texas (USA) ‘brown tide’ alga on planktonic grazers[J]. Marine Ecology Progress Series, 126: 285-292.
|
[12] |
BUSKEY E J, MONTAGNA P A, AMOS A F, et al, 1997. Disruption of grazer populations as a contributing factor to the initiation of the Texas brown tide algal bloom[J]. Limnology and Oceanography, 42(5 Part2): 1215-1222.
|
[13] |
CARON D A, GOBLER C J, LONSDALE D J, et al, 2004. Microbial herbivory on the brown tide alga, Aureococcus anophagefferens: results from natural ecosystems, mesocosms and laboratory experiments[J]. Harmful Algae, 3(4): 439-457.
|
[14] |
CARON D A, LIM E L, KUNZE H, et al, 1989. Trophic interactions between nano- and microzooplankton and the “brown tide”[M]//COSPER E M, BRICELJ V M, CARPENTER E J. Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Berlin, Heidelberg: Springer: 265-294.
|
[15] |
CAVANAUGH G M, 1956. Formulae and methods of the marine biological laboratory chemical room[M]. 6th ed. Woods Hole, Massachusetts: Marine Biological Laboratory: 67-69.
|
[16] |
DEMOTT W R, WATSON M D, 1991. Remote detection of algae by copepods: responses to algal size, odors and motility[J]. Journal of Plankton Research, 13(6): 1203-1222.
|
[17] |
DEONARINE S N, GOBLER C J, LONSDALE D J, et al, 2006. Role of zooplankton in the onset and demise of harmful brown tide blooms (Aureococcus anophagefferens) in US mid-Atlantic estuaries[J]. Aquatic Microbial Ecology, 44: 181-195.
|
[18] |
DEUER S M, GRÜNBAUM D, 2006. Individual foraging behaviors and population distributions of a planktonic predator aggregating to phytoplankton thin layers[J]. Limnology and Oceanography, 51(1): 109-116.
|
[19] |
DODGE J D, CRAWFORD R M, 1971. Fine structure of the dinoflagellate Oxyrrhis marina. II. The flagellar system[J]. Protistologica, 7: 399-409.
|
[20] |
DODGE J D, CRAWFORD R M, 1974. Fine structure of the dinoflagelate Oxyrrhis marina III. Phagotrophy[J]. Protistologica, 10: 239-244.
|
[21] |
EVANS C, KADNER S V, DARROCH L J, et al, 2007. The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulfoniopropionate (DMSP) cleavage: an Emiliania huxleyi culture study[J]. Limnology and Oceanography, 52(3): 1036-1045.
|
[22] |
EVANS C, MALIN G, MILLS G P, et al, 2006. Viral infection of Emiliania huxleyi (Prymnesiophyceae) leads to elevated production of reactive oxygen species[J]. Journal of Phycology, 42(5): 1040-1047.
|
[23] |
EVANS C, WILSON W H, 2008. Preferential grazing of Oxyrrhis marina on virus infected Emiliania huxleyi[J]. Limnology and Oceanography, 53(5): 2035-2040.
|
[24] |
FENCHEL T, 1980. Suspension feeding in ciliated protozoa: functional response and particle size selection[J]. Microbial Ecology, 6(1): 1-11.
|
[25] |
FLYNN K J, DAVIDSON K, CUNNINGHAM A, 1996. Prey selection and rejection by a microflagellate; implications for the study and operation of microbial food webs[J]. Journal of Experimental Marine Biology and Ecology, 196(1-2): 357-372.
|
[26] |
FROST B W, 1972. Effects of size and concentration of food particles on the Feeding behavior of the marine planktonic copepod Calanus pacificus[J]. Limnology and Oceanography, 17(6): 805-815.
|
[27] |
GENTLEMAN W, LEISING A, FROST B, et al, 2003. Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 50(22-26): 2847-2875.
|
[28] |
GOBLER C J, DEONARINE S, LEIGH-BELL J, et al, 2004. Ecology of phytoplankton communities dominated by Aureococcus anophagefferens: the role of viruses, nutrients, and microzooplankton grazing[J]. Harmful Algae, 3(4): 471-483.
|
[29] |
GOBLER C J, RENAGHAN M J, BUCK N J, 2002. Impacts of nutrients and grazing mortality on the abundance of Aureococcus anophagefferens during a New York brown tide Bloom[J]. Limnology and Oceanography, 47(1): 129-141.
|
[30] |
HANSEN F C, WITTE H J, PASSARGE J, 1996. Grazing in the heterotrophic dinoflagellate Oxyrrhis marina: size selectivity and preference for calcified Emiliania huxleyi cells[J]. Aquatic Microbial Ecology, 10(3): 307-313.
|
[31] |
HANSEN P J, BJØRNSEN P K, HANSEN B W, 1997. Zooplankton grazing and growth: Scaling within the 2-2, -μm body size range[J]. Limnology and Oceanography, 42(4): 687-704.
|
[32] |
HEINBOKEL J F, 1978. Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures[J]. Marine Biology, 47(2): 177-189.
|
[33] |
IVLEV V S, 1961. Experimental ecology of the feeding of fishes[M]. New Haven: The University Press of Yale.
|
[34] |
JACOBS J, 1974. Quantitative measurement of food selection: a modification of the forage ratio and Ivlev's electivity index[J]. Oecologia, 14(4): 413-417.
|
[35] |
JEONG H J, KANG H, SHIM J H, et al, 2001. Interactions among the toxic dinoflagellate Amphidinium carterae, the heterotrophic dinoflagellate Oxyrrhis marina, and the calanoid copepods Acartia spp.[J]. Marine Ecology Progress Series, 218: 77-86.
|
[36] |
JEONG H J, KIM J S, YOO Y D, et al, 2003. Feeding by the heterotrophic dinoflagellate Oxyrrhis marina on the red-tide raphidophyte Heterosigma akashiwo: a potential biological method to control red tides using mass-cultured grazers[J]. Journal of Eukaryotic Microbiology, 50(4): 274-282.
|
[37] |
JEONG H J, SEONG K A, YOO Y D, et al, 2008. Feeding and grazing impact by small marine heterotrophic dinoflagellates on heterotrophic bacteria[J]. Journal of Eukaryotic Microbiology, 55(4): 271-288.
|
[38] |
JEONG H J, YOO Y D, KIM J S, et al, 2004. Feeding by the marine planktonic ciliate Strombidinopsis jeokjo on common heterotrophic dinoflagellates[J]. Aquatic Microbial Ecology, 36(2): 181-187.
|
[39] |
JONSSON P R, 1986. Particle size selection, feeding rates and growth dynamics of marine planktonic oligotrichous ciliates (Ciliophora: Oligotrichina)[J]. Marine Ecology Progress Series, 33: 265-277.
|
[40] |
JONSSON P R, TISELIUS P, 1990. Feeding behaviour, prey detection and capture efficiency of the copepod Acartia tonsa feeding on planktonic ciliates[J]. Marine Ecology Progress Series, 60: 35-44.
|
[41] |
KANG Y, KOCH F, GOBLER C J, 2015. The interactive roles of nutrient loading and zooplankton grazing in facilitating the expansion of harmful algal blooms caused by the pelagophyte, Aureoumbra lagunensis, to the Indian River Lagoon, FL, USA[J]. Harmful Algae, 49: 162-173.
|
[42] |
KELLER M D, BELLOWS W K, GUILLARD R R L, 1989. Dimethylsulfide production and marine phytoplankton: an additional impact of unusual blooms[M]//COSPER E M, BRICELJ V M, CARPENTER E J. Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Berlin, Heidelberg: Springer: 101-105.
|
[43] |
LIU H B, BUSKEY E J, 2000a. The exopolymer secretions (EPS) layer surrounding Aureoumbra lagunensis cells affects growth, grazing, and behavior of protozoa[J]. Limnology and Oceanography, 45(5): 1187-1191.
|
[44] |
LIU HONGBIN, BUSKEY E J, 2000b. Hypersalinity enhances the production of extracellular polymeric substance (EPS) in the Texas brown tide alga, Aureoumbra lagunensis (Pelagophyceae)[J]. Journal of Phycology, 36(1): 71-77.
|
[45] |
LONSDALE D J, COSPER E M, KIM W S, et al, 1996. Food web interactions in the plankton of Long Island bays, with preliminary observations on brown tide effects[J]. Marine Ecology Progress Series, 134: 247-263.
|
[46] |
MALEJ A, HARRIS R P, 1993. Inhibition of copepod grazing by diatom exudates: a factor in the development of mucus aggregates?[J]. Marine Ecology Progress Series, 96: 33-42.
|
[47] |
MARTEL C M, 2006. Prey location, recognition and ingestion by the phagotrophic marine dinoflagellate Oxyrrhis marina[J]. Journal of Experimental Marine Biology and Ecology, 335(2): 210-220.
|
[48] |
MEHRAN R, 1996. Effects of Aureococcus anophagefferens on microzooplankton grazing and growth rates in the Peconic Bays system, Long Island, NY[D]. New York: State University of New York at Stony Brook.
|
[49] |
MENDEN-DEUER S, LESSARD E J, 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton[J]. Limnology and Oceanography, 45(3): 569-579.
|
[50] |
PASSOW U, ALLDREDGE A L, 1995. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP)[J]. Limnology and Oceanography, 40(7): 1326-1335.
|
[51] |
PASSOW U, ALLDREDGE A L, 1999. Do transparent exopolymer particles (TEP) inhibit grazing by the euphausiid Euphausia pacifica?[J]. Journal of Plankton Research, 21(11): 2203-2217.
|
[52] |
PROBYN T, PITCHER G, PIENAAR R, et al, 2001. Brown tides and mariculture in Saldanha Bay, South Africa[J]. Marine Pollution Bulletin, 42(5): 405-408.
|
[53] |
ROBERTS E C, WOOTTON E C, DAVIDSON K, et al, 2011. Feeding in the dinoflagellate Oxyrrhis marina: linking behaviour with mechanisms[J]. Journal of Plankton Research, 33(4): 603-614.
|
[54] |
SIEBURTH J M, JOHNSON P W, 1989. Picoplankton ultrastructure: A decade of preparation for the brown tide alga, Aureococcus anophagefferens[M]//COSPER E M, BRICELJ V M, CARPENTER E J. Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Berlin, Heidelberg: Springer: 1-21.
|
[55] |
SMAYDA T J, 2008. Complexity in the eutrophication-harmful algal bloom relationship, with comment on the importance of grazing[J]. Harmful Algae, 8(1): 140-151.
|
[56] |
TUORTO S J, TAGHON G L, 2014. Rates of benthic bacterivory of marine ciliates as a function of prey concentration[J]. Journal of Experimental Marine Biology and Ecology, 460: 129-134.
|
[57] |
TURLEY C M, NEWEL R C, ROBINS D B, 1986. Survival strategies of two small marine ciliates and their role in regulating bacterial community structure under experimental conditions[J]. Marine Ecology Progress Series, 33: 59-70.
|