热带海洋学报 ›› 2017, Vol. 36 ›› Issue (5): 72-82.doi: 10.11978/2017005CSTR: 32234.14.2017005

• • 上一篇    下一篇

海上强底水砂岩油藏CO2-EOR-S数值模拟研究*

刘雪雁1,2(), 李鹏春1, 周蒂1, 陈广浩1   

  1. 1. 中国科学院边缘海与大洋地质重点实验室(南海海洋研究所), 广东 广州 510301
    2. 中国科学院大学, 北京 100049
    3. Bureau of Economic Geology, University of Texas at Austin, TX 78758, USA;
  • 收稿日期:2017-01-06 修回日期:2017-03-28 出版日期:2017-09-20 发布日期:2017-09-22
  • 作者简介:

    作者简介:刘雪雁(1992—), 女, 山东省莱芜市人, 在读硕士研究生, 主要从事二氧化碳提高采收率及地质封存研究。E-mail: xueyanliu1992@163.com

  • 基金资助:
    国家自然科学基金项目(41372256);美国能源部KeyLogic资助项目(K6000-697)

Simulation of CO2-EOR-S in an offshore sandstone reservoir with strong bottom water

Xueyan LIU1,2(), Pengchun LI1, Di ZHOU1, Jiemin LU3, Guanghao CHEN1   

  1. 1. CAS Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Guangzhou 510301, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Bureau of Economic Geology, The University of Texas at Austin, Texas 78758, USA
  • Received:2017-01-06 Revised:2017-03-28 Online:2017-09-20 Published:2017-09-22
  • About author:

    Author:QIU Chunhua.E-mail: qiuchh3@mail. sysu.edu.cn

  • Supported by:
    National Natural Science Foundation of China (41372256);KeyLogic Project of U.S. Department of Energy

摘要:

二氧化碳驱提高采收率及地质封存 (CO2-EOR-S)技术是目前实现温室气体减排和应对全球气候变暖最经济有效的手段之一。文章以珠江口盆地惠州21-1油田M10层为对象, 利用Petrel和CMG-GEM油藏数值模拟方法进行了注CO2驱提高采收率能力评价、注CO2流体状态方程拟合以及不同方案注采参数优化、合理方式优选, 以探讨该油层的CO2-EOR-S潜力。对比9个模拟方案结果表明: 1) 在不同开采条件下, 混相驱、近混相驱和非混相驱方案比例4︰3︰2; 混相驱方案的采收率提高效果最为明显, 相较于未注入CO2, 提高约5.48%~8.73%, 而近混相驱和非混相驱仅分别提高为2.96%~4.33%和2.01%~2.67%; 基于细管模拟结果 (最小混相压力约31MPa), 在M10原始地层压力条件下, CO2与原油达到近混相状态; 2) 模拟注入CO2五年, 采用两口井同时以41MPa的井底流压注入CO2效果最佳, 采收率从34.7%提高到43.4%, 累计产油量从2.22×106m3提高到2.78×106m3; 含水率从约96%降到约59%; 共注入CO2 9.2Mt, 封存6.7Mt, 占注入量的73%, 封存速率约1.33×106t·a-1; 3) 对于单井注入, 原油采收率与CO2封存量呈负相关影响, 而两口井注入条件下呈正相关, 因此增加注入井数有助于在提高采收率的同时加大封存量。

关键词: 海上强底水油藏, CO2-EOR-S, 混相驱, 最小混相压力, 组分模型

Abstract:

CO2 Enhanced Oil Recovery and Sequestration (CO2-EOR-S) is currently the most effective and economic technology for reducing CO2 emission from fossil fuels. To evaluate the CO2-EOR-S potential of M10 oil reservoir in the HZ21-1 oil field, we conducted a compositional simulation using Petrel and CMG-GEM reservoir simulators. We constructed a geological (including structures and facies) model first and then matched the oil production history and simulated CO2 injection in nine cases with different well patterns and bottom pressures. The results show that 1) the ratio of case number under miscible, near-miscible cases and immiscible conditions is 4︰3︰2, among which miscible flooding has the highest recovery factor (5.48%~8.73%) than the others and the Miscible Minimum Pressure (MMP) in M10 reservoir is about 31 MPa so that CO2 and oil could be near-miscible with oil under the condition of initial formation pressure; 2) the best case after CO2 injected five years is two injection wells with injection pressure at about 41 MPa, increasing oil recovery factor and cumulative oil production from 34.7% to 43.4% and 2.22×106 to 2.78×106 m3 respectively, while decreasing water cut from 96% to 59% with CO2 storage volume of 6.7 Mt, which takes 73% of the whole CO2 injection volume (9.2 Mt), and having a rate of CO2 storage on 1.33×106 t·a-1; 3) when CO2 was injected through one single injection well, the effects on oil recovery factor and CO2 storage volume would be a negative relation while it would turn to a positive relation through two injection wells, which means more injection wells would increase oil recovery factor and carbon storage volume synchronously.

Key words: offshore oil reservoir with strong bottom water, CO2-EOR-S, miscible flooding, minimum miscible pressure, component modeling